Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance.

Identifieur interne : 004960 ( Main/Exploration ); précédent : 004959; suivant : 004961

An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance.

Auteurs : Ulo Niinemets [Estonie] ; Olevi Kull ; John D. Tenhunen

Source :

RBID : pubmed:12651418

Abstract

Maximum Rubisco activities (V(cmax)), rates of photosynthetic electron transport (J(max)), and leaf nitrogen and chlorophyll concentrations were studied along a light gradient in the canopies of four temperate deciduous species differing in shade tolerance according to the ranking: Populus tremula L. < Fraxinus excelsior L. < Tilia cordata Mill. = Corylus avellana L. Long-term light environment at the canopy sampling locations was characterized by the fractional penetration of irradiance in the photosynthetically active spectral region (I(sum)). We used a process-based model to distinguish among photosynthesis limitations resulting from variability in fractional nitrogen investments in Rubisco (P(R)), bioenergetics (P(B), N in rate-limiting proteins of photosynthetic electron transport) and light harvesting machinery (P(L), N in chlorophyll and thylakoid chlorophyll-protein complexes). On an area basis, V(cmax) and J(max) (V(a) (cmax) and J(a) (max)) increased with increasing growth irradiance in all species, and the span of variation within species ranged from two (T. cordata) to ten times (C. avellana). Examination of mass-based V(cmax) and J(max) (V(m) (cmax) and J(m) (max)) demonstrated that the positive relationships between area-based quantities and relative irradiance mostly resulted from the scaling of leaf dry mass per area (M(A)) with irradiance. Although V(m) (cmax) and J(m) (max) were positively related to growth irradiance in C. avellana, and J(m) (max) was positively related to irradiance in P. tremula, the variation range was only a factor of two. Moreover, V(m) (cmax) and J(m) (max) were negatively correlated with relative irradiance in T. cordata. Rubisco activity in crude leaf extracts generally paralleled the gas-exchange data, but it was independent of light in T. cordata, suggesting that declining V(m) (cmax) with increasing relative irradiance was related to increasing diffusive resistances from the intercellular air spaces to the sites of carboxylation in this species. Because irradiance had little effect on foliar nitrogen concentration, the relationships of P(B) and P(R) with irradiance were similar to those of V(m) (cmax) and J(m) (max). Shade-intolerant species tended to have greater P(B) and P(R) and also larger V(a) (cmax) and J(a) (max) than more shade-tolerant species. However, for the whole material, P(B) and P(R) varied only about 50%, whereas V(a) (cmax) and J(a) (max) varied more than 15-fold, further emphasizing the importance of leaf anatomical plasticity in determining photosynthetic acclimation to high irradiance. Leaf chlorophyll concentrations and fractional nitrogen investments in light harvesting increased hyperbolically with decreasing irradiance to improve quantum use efficiency for incident irradiance. The effect of irradiance on P(L) was of the same order as its effect in the opposite direction on M(A), leading to either a constant model estimate of leaf absorptance with I(sum) or a slightly positive correlation. We conclude that leaf morphological plasticity is a more relevant determinant of foliage adaptation to high irradiance than foliage biochemical properties, whereas biochemical adaptation to low irradiance is of the same magnitude as the anatomical adjustments. Although shade-tolerant species did not have greater chlorophyll concentrations and P(L) than shade-intolerant species, they possessed lower M(A), and could maintain a more extensive foliar display for light capture with constant biomass investment in leaves.

DOI: 10.1093/treephys/18.10.681
PubMed: 12651418


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance.</title>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ulo" last="Niinemets">Ulo Niinemets</name>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian Institute of Ecology, Riia 181, Tartu EE 2400, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Estonian Institute of Ecology, Riia 181, Tartu EE 2400</wicri:regionArea>
<wicri:noRegion>Tartu EE 2400</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kull, Olevi" sort="Kull, Olevi" uniqKey="Kull O" first="Olevi" last="Kull">Olevi Kull</name>
</author>
<author>
<name sortKey="Tenhunen, John D" sort="Tenhunen, John D" uniqKey="Tenhunen J" first="John D." last="Tenhunen">John D. Tenhunen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1998">1998</date>
<idno type="RBID">pubmed:12651418</idno>
<idno type="pmid">12651418</idno>
<idno type="doi">10.1093/treephys/18.10.681</idno>
<idno type="wicri:Area/Main/Corpus">004514</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004514</idno>
<idno type="wicri:Area/Main/Curation">004514</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004514</idno>
<idno type="wicri:Area/Main/Exploration">004514</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance.</title>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ulo" last="Niinemets">Ulo Niinemets</name>
<affiliation wicri:level="1">
<nlm:affiliation>Estonian Institute of Ecology, Riia 181, Tartu EE 2400, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Estonian Institute of Ecology, Riia 181, Tartu EE 2400</wicri:regionArea>
<wicri:noRegion>Tartu EE 2400</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Kull, Olevi" sort="Kull, Olevi" uniqKey="Kull O" first="Olevi" last="Kull">Olevi Kull</name>
</author>
<author>
<name sortKey="Tenhunen, John D" sort="Tenhunen, John D" uniqKey="Tenhunen J" first="John D." last="Tenhunen">John D. Tenhunen</name>
</author>
</analytic>
<series>
<title level="j">Tree physiology</title>
<idno type="eISSN">1758-4469</idno>
<imprint>
<date when="1998" type="published">1998</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Maximum Rubisco activities (V(cmax)), rates of photosynthetic electron transport (J(max)), and leaf nitrogen and chlorophyll concentrations were studied along a light gradient in the canopies of four temperate deciduous species differing in shade tolerance according to the ranking: Populus tremula L. < Fraxinus excelsior L. < Tilia cordata Mill. = Corylus avellana L. Long-term light environment at the canopy sampling locations was characterized by the fractional penetration of irradiance in the photosynthetically active spectral region (I(sum)). We used a process-based model to distinguish among photosynthesis limitations resulting from variability in fractional nitrogen investments in Rubisco (P(R)), bioenergetics (P(B), N in rate-limiting proteins of photosynthetic electron transport) and light harvesting machinery (P(L), N in chlorophyll and thylakoid chlorophyll-protein complexes). On an area basis, V(cmax) and J(max) (V(a) (cmax) and J(a) (max)) increased with increasing growth irradiance in all species, and the span of variation within species ranged from two (T. cordata) to ten times (C. avellana). Examination of mass-based V(cmax) and J(max) (V(m) (cmax) and J(m) (max)) demonstrated that the positive relationships between area-based quantities and relative irradiance mostly resulted from the scaling of leaf dry mass per area (M(A)) with irradiance. Although V(m) (cmax) and J(m) (max) were positively related to growth irradiance in C. avellana, and J(m) (max) was positively related to irradiance in P. tremula, the variation range was only a factor of two. Moreover, V(m) (cmax) and J(m) (max) were negatively correlated with relative irradiance in T. cordata. Rubisco activity in crude leaf extracts generally paralleled the gas-exchange data, but it was independent of light in T. cordata, suggesting that declining V(m) (cmax) with increasing relative irradiance was related to increasing diffusive resistances from the intercellular air spaces to the sites of carboxylation in this species. Because irradiance had little effect on foliar nitrogen concentration, the relationships of P(B) and P(R) with irradiance were similar to those of V(m) (cmax) and J(m) (max). Shade-intolerant species tended to have greater P(B) and P(R) and also larger V(a) (cmax) and J(a) (max) than more shade-tolerant species. However, for the whole material, P(B) and P(R) varied only about 50%, whereas V(a) (cmax) and J(a) (max) varied more than 15-fold, further emphasizing the importance of leaf anatomical plasticity in determining photosynthetic acclimation to high irradiance. Leaf chlorophyll concentrations and fractional nitrogen investments in light harvesting increased hyperbolically with decreasing irradiance to improve quantum use efficiency for incident irradiance. The effect of irradiance on P(L) was of the same order as its effect in the opposite direction on M(A), leading to either a constant model estimate of leaf absorptance with I(sum) or a slightly positive correlation. We conclude that leaf morphological plasticity is a more relevant determinant of foliage adaptation to high irradiance than foliage biochemical properties, whereas biochemical adaptation to low irradiance is of the same magnitude as the anatomical adjustments. Although shade-tolerant species did not have greater chlorophyll concentrations and P(L) than shade-intolerant species, they possessed lower M(A), and could maintain a more extensive foliar display for light capture with constant biomass investment in leaves.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">12651418</PMID>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1758-4469</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>10</Issue>
<PubDate>
<Year>1998</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Tree physiology</Title>
<ISOAbbreviation>Tree Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance.</ArticleTitle>
<Pagination>
<MedlinePgn>681-696</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Maximum Rubisco activities (V(cmax)), rates of photosynthetic electron transport (J(max)), and leaf nitrogen and chlorophyll concentrations were studied along a light gradient in the canopies of four temperate deciduous species differing in shade tolerance according to the ranking: Populus tremula L. < Fraxinus excelsior L. < Tilia cordata Mill. = Corylus avellana L. Long-term light environment at the canopy sampling locations was characterized by the fractional penetration of irradiance in the photosynthetically active spectral region (I(sum)). We used a process-based model to distinguish among photosynthesis limitations resulting from variability in fractional nitrogen investments in Rubisco (P(R)), bioenergetics (P(B), N in rate-limiting proteins of photosynthetic electron transport) and light harvesting machinery (P(L), N in chlorophyll and thylakoid chlorophyll-protein complexes). On an area basis, V(cmax) and J(max) (V(a) (cmax) and J(a) (max)) increased with increasing growth irradiance in all species, and the span of variation within species ranged from two (T. cordata) to ten times (C. avellana). Examination of mass-based V(cmax) and J(max) (V(m) (cmax) and J(m) (max)) demonstrated that the positive relationships between area-based quantities and relative irradiance mostly resulted from the scaling of leaf dry mass per area (M(A)) with irradiance. Although V(m) (cmax) and J(m) (max) were positively related to growth irradiance in C. avellana, and J(m) (max) was positively related to irradiance in P. tremula, the variation range was only a factor of two. Moreover, V(m) (cmax) and J(m) (max) were negatively correlated with relative irradiance in T. cordata. Rubisco activity in crude leaf extracts generally paralleled the gas-exchange data, but it was independent of light in T. cordata, suggesting that declining V(m) (cmax) with increasing relative irradiance was related to increasing diffusive resistances from the intercellular air spaces to the sites of carboxylation in this species. Because irradiance had little effect on foliar nitrogen concentration, the relationships of P(B) and P(R) with irradiance were similar to those of V(m) (cmax) and J(m) (max). Shade-intolerant species tended to have greater P(B) and P(R) and also larger V(a) (cmax) and J(a) (max) than more shade-tolerant species. However, for the whole material, P(B) and P(R) varied only about 50%, whereas V(a) (cmax) and J(a) (max) varied more than 15-fold, further emphasizing the importance of leaf anatomical plasticity in determining photosynthetic acclimation to high irradiance. Leaf chlorophyll concentrations and fractional nitrogen investments in light harvesting increased hyperbolically with decreasing irradiance to improve quantum use efficiency for incident irradiance. The effect of irradiance on P(L) was of the same order as its effect in the opposite direction on M(A), leading to either a constant model estimate of leaf absorptance with I(sum) or a slightly positive correlation. We conclude that leaf morphological plasticity is a more relevant determinant of foliage adaptation to high irradiance than foliage biochemical properties, whereas biochemical adaptation to low irradiance is of the same magnitude as the anatomical adjustments. Although shade-tolerant species did not have greater chlorophyll concentrations and P(L) than shade-intolerant species, they possessed lower M(A), and could maintain a more extensive foliar display for light capture with constant biomass investment in leaves.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Niinemets</LastName>
<ForeName>Ulo</ForeName>
<Initials>U</Initials>
<AffiliationInfo>
<Affiliation>Estonian Institute of Ecology, Riia 181, Tartu EE 2400, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kull</LastName>
<ForeName>Olevi</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tenhunen</LastName>
<ForeName>John D.</ForeName>
<Initials>JD</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Canada</Country>
<MedlineTA>Tree Physiol</MedlineTA>
<NlmUniqueID>100955338</NlmUniqueID>
<ISSNLinking>0829-318X</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2003</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2003</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>4</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2003</Year>
<Month>3</Month>
<Day>26</Day>
<Hour>4</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">12651418</ArticleId>
<ArticleId IdType="doi">10.1093/treephys/18.10.681</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Estonie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Kull, Olevi" sort="Kull, Olevi" uniqKey="Kull O" first="Olevi" last="Kull">Olevi Kull</name>
<name sortKey="Tenhunen, John D" sort="Tenhunen, John D" uniqKey="Tenhunen J" first="John D." last="Tenhunen">John D. Tenhunen</name>
</noCountry>
<country name="Estonie">
<noRegion>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ulo" last="Niinemets">Ulo Niinemets</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004960 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004960 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:12651418
   |texte=   An analysis of light effects on foliar morphology, physiology, and light interception in temperate deciduous woody species of contrasting shade tolerance.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:12651418" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020